#include "GyverBME280.h" /* ============ Utilities ============ */ float pressureToAltitude(float pressure) { if (!pressure) return 0; // If the pressure module has been disabled return '0' pressure /= 100.0F; // Convert [Pa] to [hPa] return 44330.0f * (1.0f - pow(pressure / 1013.25f, 0.1903f)); // Сalculate altitude } float pressureToMmHg(float pressure) { return (float)(pressure * 0.00750061683f); // Convert [Pa] to [mm Hg] } /* ============ Setup & begin ============ */ GyverBME280::GyverBME280(TwoWire &wire) { _wire = &wire; } bool GyverBME280::begin() { return begin(0x76); } bool GyverBME280::begin(uint8_t address) { _i2c_address = address; /* === Start I2C bus & check BME280 === */ if (!reset()) return false; // BME280 software reset & ack check uint8_t ID = readRegister(0xD0); if (ID != 0x60 && ID != 0x58) return false; // Check chip ID (bme/bmp280) readCalibrationData(); // Read all calibration values /* === Load settings to BME280 === */ writeRegister(0xF2, _hum_oversampl); // write hum oversampling value writeRegister(0xF2, readRegister(0xF2)); // rewrite hum oversampling register writeRegister(0xF4, ((_temp_oversampl << 5) | (_press_oversampl << 2) | _operating_mode)); // write temp & press oversampling value , normal mode writeRegister(0xF5, ((_standby_time << 5) | (_filter_coef << 2))); // write standby time & filter coef return true; } void GyverBME280::setMode(uint8_t mode) { _operating_mode = mode; } void GyverBME280::setFilter(uint8_t mode) { _filter_coef = mode; } void GyverBME280::setStandbyTime(uint8_t mode) { _standby_time = mode; } void GyverBME280::setHumOversampling(uint8_t mode) { _hum_oversampl = mode; } void GyverBME280::setTempOversampling(uint8_t mode) { _temp_oversampl = mode; } void GyverBME280::setPressOversampling(uint8_t mode) { _press_oversampl = mode; } /* ============ Reading ============ */ int32_t GyverBME280::readTempInt(void) { int32_t temp_raw = readRegister24(0xFA); // Read 24-bit value if (temp_raw == 0x800000) return 0; // If the temperature module has been disabled return '0' temp_raw >>= 4; // Start temperature reading in integers int32_t value_1 = ((((temp_raw >> 3) - ((int32_t)CalibrationData._T1 << 1))) * ((int32_t)CalibrationData._T2)) >> 11; int32_t value_2 = (((((temp_raw >> 4) - ((int32_t)CalibrationData._T1)) * ((temp_raw >> 4) - ((int32_t)CalibrationData._T1))) >> 12) * ((int32_t)CalibrationData._T3)) >> 14; return ((int32_t)value_1 + value_2); // Return temperature in integers } float GyverBME280::readTemperature(void) { int32_t temp_raw = readTempInt(); float T = (temp_raw * 5 + 128) >> 8; return T / 100.0; // Return temperature in float } float GyverBME280::readPressure(void) { uint32_t press_raw = readRegister24(0xF7); // Read 24-bit value if (press_raw == 0x800000) return 0; // If the pressure module has been disabled return '0' press_raw >>= 4; // Start pressure converting int64_t value_1 = ((int64_t)readTempInt()) - 128000; int64_t value_2 = value_1 * value_1 * (int64_t)CalibrationData._P6; value_2 = value_2 + ((value_1 * (int64_t)CalibrationData._P5) << 17); value_2 = value_2 + (((int64_t)CalibrationData._P4) << 35); value_1 = ((value_1 * value_1 * (int64_t)CalibrationData._P3) >> 8) + ((value_1 * (int64_t)CalibrationData._P2) << 12); value_1 = (((((int64_t)1) << 47) + value_1)) * ((int64_t)CalibrationData._P1) >> 33; if (!value_1) return 0; // Avoid division by zero int64_t p = 1048576 - press_raw; p = (((p << 31) - value_2) * 3125) / value_1; value_1 = (((int64_t)CalibrationData._P9) * (p >> 13) * (p >> 13)) >> 25; value_2 = (((int64_t)CalibrationData._P8) * p) >> 19; p = ((p + value_1 + value_2) >> 8) + (((int64_t)CalibrationData._P7) << 4); return (float)p / 256; // Return pressure in float } float GyverBME280::readHumidity(void) { _wire->beginTransmission(_i2c_address); // Start I2C transmission _wire->write(0xFD); // Request humidity data register if (_wire->endTransmission() != 0) return 0; _wire->requestFrom(_i2c_address, 2); // Request humidity data int32_t hum_raw = ((uint16_t)_wire->read() << 8) | (uint16_t)_wire->read(); // Read humidity data if (hum_raw == 0x8000) return 0; // If the humidity module has been disabled return '0' int32_t value = (readTempInt() - ((int32_t)76800)); // Start humidity converting value = (((((hum_raw << 14) - (((int32_t)CalibrationData._H4) << 20) - (((int32_t)CalibrationData._H5) * value)) +((int32_t)16384)) >> 15) * (((((((value * ((int32_t)CalibrationData._H6)) >> 10) *(((value * ((int32_t)CalibrationData._H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)CalibrationData._H2) + 8192) >> 14)); value = (value - (((((value >> 15) * (value >> 15)) >> 7) * ((int32_t)CalibrationData._H1)) >> 4)); value = (value < 0) ? 0 : value; value = (value > 419430400) ? 419430400 : value; float h = (value >> 12); return h / 1024.0; // Return humidity in float } /* ============ Misc ============ */ bool GyverBME280::isMeasuring(void) { return (bool)((readRegister(0xF3) & 0x08) >> 3); // Read status register & mask bit "measuring" } void GyverBME280::oneMeasurement(void) { writeRegister(0xF4 , ((readRegister(0xF4) & 0xFC) | 0x02)); // Set the operating mode to FORCED_MODE } /* ============ Private ============ */ /* = BME280 software reset = */ bool GyverBME280::reset(void) { if (!writeRegister(0x0E , 0xB6)) return false; delay(10); return true; } /* = Read and combine three BME280 registers = */ uint32_t GyverBME280::readRegister24(uint8_t address) { _wire->beginTransmission(_i2c_address); _wire->write(address); if (_wire->endTransmission() != 0) return 0x800000; _wire->requestFrom(_i2c_address, 3); return (((uint32_t)_wire->read() << 16) | ((uint32_t)_wire->read() << 8) | (uint32_t)_wire->read()); } /* = Write one 8-bit BME280 register = */ bool GyverBME280::writeRegister(uint8_t address , uint8_t data) { _wire->beginTransmission(_i2c_address); _wire->write(address); _wire->write(data); if (_wire->endTransmission() != 0) return false; return true; } /* = Read one 8-bit BME280 register = */ uint8_t GyverBME280::readRegister(uint8_t address) { _wire->beginTransmission(_i2c_address); _wire->write(address); if (_wire->endTransmission() != 0) return 0; _wire->requestFrom(_i2c_address , 1); return _wire->read(); } /* = Structure to store all calibration values = */ void GyverBME280::readCalibrationData(void) { /* first part request*/ _wire->beginTransmission(_i2c_address); _wire->write(0x88); if (_wire->endTransmission() != 0) return; _wire->requestFrom(_i2c_address , 25); /* reading */ CalibrationData._T1 = (_wire->read() | (_wire->read() << 8)); CalibrationData._T2 = (_wire->read() | (_wire->read() << 8)); CalibrationData._T3 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P1 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P2 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P3 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P4 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P5 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P6 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P7 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P8 = (_wire->read() | (_wire->read() << 8)); CalibrationData._P9 = (_wire->read() | (_wire->read() << 8)); CalibrationData._H1 = _wire->read(); /* second part request*/ _wire->beginTransmission(_i2c_address); _wire->write(0xE1); _wire->endTransmission(); _wire->requestFrom(_i2c_address , 8); /* reading */ CalibrationData._H2 = (_wire->read() | (_wire->read() << 8)); CalibrationData._H3 = _wire->read(); CalibrationData._H4 = (_wire->read() << 4); uint8_t interVal = _wire->read(); CalibrationData._H4 |= (interVal & 0xF); CalibrationData._H5 = (((interVal & 0xF0) >> 4) | (_wire->read() << 4)); CalibrationData._H6 = _wire->read(); }